Tchebycheff approximations by functions unisolvent of variable degree
نویسندگان
چکیده
منابع مشابه
Best Approximations by Smooth Functions
THEOREM 1.1 (U. Sattes). Let r > 2 and g E C[O, l]\B$,‘. Then f”EB$’ is a best approximation to g, in L” (such a best approximation necessari/J) exisrs) if and only if there exists a subinterual (a, /?) c IO. 1 I and a positilse integer M > r + 1 for which the following conditions hold (i) f”l,n.ll, is a Perfect spline of degree r with exactly) M ~ r -1 knots arzd I.f”““(s)l = I a. e. on [u,pI....
متن کاملConstruction of Odd-Variable Resilient Boolean Functions with Optimal Degree
In this paper, we investigate the problem of obtaining new construction methods for resilient Boolean functions. Given n (n odd and n ≥ 35), we firstly provide degree optimized 1-resilient n-variable functions with currently best known nonlinearity. Then we extend our method to obtain m-resilient (m > 1) Boolean functions with degree n − m − 1, we show that these Boolean functions also achieve ...
متن کاملThe use of radial basis functions by variable shape parameter for solving partial differential equations
In this paper, some meshless methods based on the local Newton basis functions are used to solve some time dependent partial differential equations. For stability reasons, used variably scaled radial kernels for constructing Newton basis functions. In continuation, with considering presented basis functions as trial functions, approximated solution functions in the event of spatial variable wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1961
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1961-0136913-8